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LINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTALCALNEJ

A

F

—
u

[K1{q} = {F} = {a}=[K] {F}

Jedli obcigzenie da sig roztozy¢ na sktadowe: {F* } = a{Fﬁ }-|- ﬂ{E)}

to mozna uzyé metode superpozyc;ji:

g.}=[KI"{F} = la.j= K] (edF, }+ B, 1) = ol KTHE, }+ BIKTHE, ]

i wtedy rozwigzanie koricowe jest sumg rozwigzan sktadowych:

)= a1+ Blan]

Nieliniowosci strukturalne powodujg, ze odpowiedz konstrukcji zmienia sie
nieproporcjonalnie do przytozonych sif. Realistycznie rzecz biorgc, prawie wszystkie
konstrukcje sg nieliniowe z natury, ale nie zawsze w takim stopniu, ze nieliniowosci te

majg znaczacy wptyw na analize.




NIELINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTAtCALNEJ

W analizie nieliniowe;j maC|erz sztywnosci konstrukgji i wektor obcigzenia mogg zalezeé
od rozwigzania i dlatego sa nieznane.

Aby rozwigzac problem, ‘program uzywa procedury |teracyjnej, w ktérej szereg przyblizen
liniowych zbiega sug/do rzeczywistego rOZW|azan|a/,n|eI|n|ow\ego

KN = )

Czy rozwigzanie istnieje? lle rozwigzan istnieje?
Rozwigzanie czasochtonne

lteracyjny proces rozwigzania — problem konwergenc;ji
Wyniki obcigzenia zalezg od historii obcigzenia




Przyczyny zachowania nieliniowego

Nieliniowosci materiatowe - nieliniowe zalezno$ci G-g
Czynniki moggce wptywac na wiasciwosci o-& materiatu:

7\

———

historia obcigzenia (jak w przypadku odpowiedzi sprezysto-plastycznej),
* warunki Srodowiskowe (np. temperatura)
* czas W ktérym obcigzenie dziata (jak w przypadku petzania).
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prosty sprezysto-plastyczny model
zachowania sie materiatu

Nieliniowosci geometryczne

Jesli struktura doswiadcza duzych odksztatcen, jej zmieniajgca sie konfiguracja geometryczna
moze spowodowac, ze struktura zareaguje nieliniowo.

Pod obcigzeniami poprzecznymi belka jest bardzo elastyczna.
W miare wzrostu sity P pret ugina sie tak bardzo, ze ramie momentu zmniejsza
sie zauwazalnie, powodujgc wzrost sztywnosci przy wiekszych obcigzeniach.
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» é duze deformacje konstrukcji

Sity osiowe mogg zwiekszaé
lub zmniejszac sztywnosc belki
w zaleznosci od kierunku sit.
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Nieliniowosci materiatowe

178 n .
Przemieszczenia UZ
160.2|w funkcji obcigzenia

Przyktad 1 — duralowy ptaskownik (A=20x80 mmz2), Ro2=280MPa (bez umocnienia)
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Nieliniowosci geometryczne

Przyktad 2 — duralowy ptaskownik (A=20x80 mm?2)

Obcigzony sitg (FZ=3000 N)

Przemieszczenia UZ [mm]
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ANALIZA LINIOWA

Naprezenia SX [MPa]
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Nieliniowosci geometryczne

Przyktad 3 — duralowy ptaskownik (A=20x80 mm2)

wirujacy wzgledem osi Z (n=3000 obr./min) _4_
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Przyczyny zachowania nieliniowego (c.d.)

Tarcie, oddziatywanie kontaktowe, przerwy (gaps), liny

a - length
of contact zone
a=a(P)

Znaczenie historii obcigzenia dla wyniku koncowego obcigzenia

P, ¢

v hd

tarcie materiat sprezysto-plastyczny




ANSYS

MAY 29 2003
16:12:54

Test 1: zderzenie walca z rurg

LA
AL
4
74

Zderzenie (petna dynamika)

Zgniatanie quasistatyczne:




Test 2. Zderzenie sekcji kadtuba samolotu Boeing 737-200

.100E-03 .100E-02

.500E-03 .00z
. 100E-03 .100E-0Z




Test 3. Analiza utraty statecznosci Sciskanego osiowo elementu cienkosciennego o przekroju zamknietym

uz(T) AN

koniec utwierdzony

Model MES

1) Analiza pod obcigzeniem statycznym zmiennym 2) Analiza dynamiczna, po uderzeniu nieskoriczenie duzg masa
w czasie, zadanym przemieszczeniowo o ustalonej predkosci (nieskoriczenie duza energia uderzenia).




Opis ciata odksztatcalnego o nieliniowych wtasciwosciach

Wektory sktadowych stanu odksztatcenia i naprezenia .

£T = [51,

&y, &3,

Y12, V2

3, Y13], ol =[011, 022, 033, 012, 023, Oj3].

Zwiazki kinematyczne pomi¢dzy odksztalceniami i przemieszczeniami otrzymuje si¢ przez analize zmian wymiarow elementarnego
fragmentu ciata, a nast¢gpnie uzyskane wyrazenie rozwija si¢ w szereg Taylora:

1
Eij =3 (uij +uj; +uUgiUq ), | gdzie indeksy po przecinkach oznaczajg rozniczkowanie po sktadowych i, j, & =1, 2, 3.

&1 [ U1

&y Uz, 2

_ )& | _ Uz, 3
€= Vre2 _<u1,2+u2,1
Y23 Uz, 3 T U3 2
Y13 \Uq,3 T U3, 1

b+ 3

gdzie pochodne macierzy funkcji ksztattu:

anil
axj

T
N;. ;

ronqq
o)
onq,
J = | ax;

67'7.13

_ax]'

aniz
ax]'

onq,
o
ony,
o)
ony3

ax]'

aniL

ax]'

anlL_
anzL

6n3L

ax]'

ax]'

axj_

1 1 1
(E(ul, )2+ 5z, 1% 45 (us 1) )
1 1 1

(U1, 2)% 45 (ug, 2)* +5 (us, 2)? .
1 1 1 _ — | &L NL
~(ug,3)? +5 (U, 3)° +5 Uz 3)° | = B, q + EBl(q) q=|& +&7
Ug, 1 Ug, 2 T U 1 Up 2 HU3 1 U3 2

U, 2 Ug,3 T Uy 2 Up 3+ U3 2 U3 3
\Uq, 1 Uq,3 T Uz 1Uz 3 T U3, 1 U3, 3 )

( Ni., 1T ) ( qTN, 1TN, 1 )
N;., zT qTN, zTN, 2
B, = - 1\T73-, 3" ot B = q"N 3'N ;
Nl.,z +N2.,1 qT(N' 1TN'2 +N’2TN‘ 1)
Na. 3" +Nj. 5" q"(N ,"N 3+ N ;"N )
, hj=123 (N1 5" + Na. 1" \g"(N "N ;+N ;"N ;)

Liniowa sktadowa odksztalcenia €” jest iloczynem macierzy B, i wektora parametrow weztowych q.
Macierz B, zalezy wylacznie od funkcji ksztattu.

Nieliniowa sktadowa odksztatcenia € jest iloczynem macierzy B, i wektora parametrow weztowych q.
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Nieliniowos¢ wywotana plastycznosciq

Zaleznos¢ pomiedzy skladowymi wektora sktadowych stanu napr¢zenia o, a skladowymi wektora odksztalcenia
sprezystego €, mozna zapisa¢ na podstawie prawa Hooka przy pomocy macierzy konstytutywnej D, ktora zawiera

wlasciwosci sprezyste materiatu (E 1 v): c = DSe. O E,
Re
Zaleznos¢ o = f (&) dotyczaca materiatu o wlasciwosciach sprezysto-
plastycznych z umocnieniem dla jednoosiowego stanu napr¢zenia = E=4¢
N &
i ite €: E=E& Ey. 7/
Odksztatcenie catkowite € e p ¢ i

Poza zakresem sprezystym przyrost odksztatcen plastycznych dg, wyznacza sig np. z prawa ptynigcia jako iloczyn
skalarnego mnoznika dA i1 pochodnej potencjatu plastycznego O wzgledem wektora skltadowych stanu naprezenia:

O;
d£p=dAZ—Q. ’ F(0,kK) =0
d OF
0o
Jesli potencjat QO zastapi si¢ funkcja plastycznosci F (o, k), zalezno$¢ przyjmie -~
posta¢ stowarzyszonego prawa plyni¢cia (z odpowiednim warunkiem do
plastycznosci). Wspolczynnik x oznacza prace plastyczng zsumowang dla catej o)
historii obcigzenia, zwigzang z izotropowym umocnieniem materiatu. Korzystajac z
hipotezy Hubera-Misesa-Hencky’ego warunek plastycznosci zapisuje si¢ w postaci: O;
7

F = 0requmnu — Re(k) = 0, F= \/%{(01 — 02)? + (02 — 03)* + (03 — 01)%} + 3(T12° + T23% + 731%) — Re (k) = 0.

Po przeksztatceniach mamy:

dF OF oF _aF\~1 .
do = D(de—dep)—{D—DamD(Eu+mD%) }ds—l)\ de.

przyrost naprezenia macierz sprezysto-plastyczna

Jesli w ustroju nie wystepuja odksztatcenia plastyczne macierz D* jest rowna macierzy konstytutywnej D 13




Zasada prac przygotowanych

X;

Roéwnania roOwnowagi ciala przedstawionego na rysunku mozna uzyska¢ z zasady prac
przygotowanych, pamig¢tajac, ze praca przygotowana reakcji sztywnych wiezow jest rOwna zero:

m
jaTds av —f pTéudV — Q'du; — fmTSudV =0
v Sp i=1 %4

Sity masowe m wyznacza si¢ z iloczynu gestosci i przyspieszen ii(f): | m = — p N q

Uogolnione przemieszczenie przygotowane ou wyznacza si€ jako iloczyn macierzy funkcji ksztattu
1 przemieszczenia przygotowanego parametrow weztowych: | g., — g 5q

Przemieszczenia przygotowane odksztalcen e wyznacza si¢ wykorzystujac liniowo$¢ macierzy B, wzgledem
wektorow q 1 oq:

1 1
6e = Bodq +-B1(q)0q +5B1(89)q = (B, + B1(q))dq.

Korzystajac z powyzszych zalezno$ci oraz przemiennosci iloczynu skalarnego wektorow zasade prac
przygotowanych da si¢ przedstawi¢ w nastepujacy sposob:

J,64"(Bo" +B")o dV — [ 5q"N"pdV — 3, 6q"N,"Q" + [, 6" N"pNgdV = 0.

Zapisujac powyzsze roOwnanie po umieszczeniu wariacji oq przed znakami catek 1 sumy otrzymamy:
T T T i ..
5q" (1,(Bo” + B, NYa dV — [, N"pdV — X% N;7Q! + [, NTpNaV) = 0,

Poniewaz przemieszczenia przygotowane oq sa dowolne 1 rézne od zera, spelnienie tego rownania wymaga
zerowania si¢ wyrazenia w nawiasie.
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Grupujac poszczegolne wyrazy w wektor sit wewnetrznych R(q) i wektor obcigzen zewnetrznych R niezalezny od
parametrow weztowych, uzyskuje si¢ nastepujacy uktad rownan nieliniowych:

R(q) - R° =0, (*)
w ktorym: R(q) = [,(By +B,")adV,
R’ = [, N'pdV +XL, N;"Q'— [, N"pNgdv.

W zagadnieniach dynamicznych z tlumieniem zalezno$¢ powyzsza uzupelnia si¢ o macierz tlumienia C,
proporcjonalng do predkosci dq/dt. Pelne réwnanie ruchu ciata przyjmuje wtedy nastgpujaca postac:

Mg+ Cq+K(q)q=PQ), | (*9)
wkiorym: K(q)q =R(q) , P(t)=[ N'p()dV+3XZ;N; ' Q'(t) , M= [,N"pN av.

Macierz M jest macierzg masowg, wektor P(f) zawiera obcigzenia zalezne od czasu, natomiast K(q) jest
nieliniowg macierzg sztywnosci, zalezng od przemieszczen weztowych.

Uktad réwnan (*) rozwigzuje si¢ metodami iteracyjnymi, np. metoda Newtona-Raphsona, ktora polega na linearyzacji
przyrostu wektora R wokot potozenia q = q,, uzyskiwanej przez rozwinigcie wyrazenia (*) w szereg Taylora, facznie z
wyrazem zawierajacym pierwsza pochodna: IR(q)

R(q) = R(q,) + oq Aq

Pochodna wektora R wzgledem wektora q oznaczana jest czesto jako macierz styczna K;. Przy r6zniczkowaniu
. ./ , « _ d

nalezy uwzgledni¢ wzor D* = =. o¢ T T 0o  0do d¢ « 0€

de —=B, +B; , —=——=D"—,

aq aq de 0q daq

Po uwzglednieniu powyzszych zwigzkow macierz styczna K, moze by¢ przedstawiona jako suma trzech macierzy:

dR(q) d(By" o) d(B, o)
KT:WZIVG—OCI dV+fV6—1q dV=K0+KG+KL, (***)

15




__OR(q) _ a(BOTo-) a(BlTa) . s s
Ky ==, = [, ” av + [, P” AV =Ko+ K; + K;, | (**%)
gdzie:
Ky, = fV B,"D*B," dV — poczatkowa macierz sztywnosci,
o1 O 0 o, 0 0 o3 O 07
0 011 0 0 012 0 0 013 0
0 0 011 0 0 012 0 0 013
012 0 0 (oY) 0 0 053 0 0 N'l
0 0 012 0 0 (oY) 0 0 033 N,3
013 0 0 033 0 0 033 0 0
0 013 0 0 053 0 0 033 0
| 0 0 013 0 0 053 0 0 033

— geometryczna macierz sztywnosci (wynikajgca ze stanu naprezenia),

K, = fV BOTD*BlT dV + fV BlTD*BOT dV + fV BlTD*BlT dV  —macierz duzych przemieszczen.

Dla liniowej statyki, przy matych przemieszczeniach i wyeliminowaniu cztonéw zaleznych od czasu otrzymujemy

nastepujaca postac:

Koq:P,

gdzie: P — wektor statych obcigzen zewnetrznych.
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W przypadku nieliniowej statyki, zwigzanej z uwzglednieniem duzych przemieszczen oraz wplywu naprezen na sztywnos¢ ciala, uktad
réwnan (**) przyjmuje posta¢, w ktorej macierz sztywnosci zalezy od parametréw weztowych:

K(q)q:P ) KT:KO+KG+KL9

gdzie: K, — macierz styczna, otrzymywana z zaleznosci (***).

Metoda iteracyjna Newtona-Raphsona

Rozwigzanie uktadu rownan nieliniowych w postaci (*) metodg Newtona-Raphsona polega na wielokrotnym
rozwigzaniu zadania liniowego uzyskanego po linearyzacji wektora obcigzen wewnetrznych R(q).

R

W polozeniu wyjSciowym znany jest wektor q, oraz wektor obcigzen K.(a.) Ki(a
. .. ... . 0 7(9iv1 (4;:2)

zewnetrznych RO. W pierwszej iteracji indeks i = 0. R__ \ o R
Przebieg doj$cia do rozwigzania jest nastgpujacy: R(qi+2) IV L~ M

Wyznaczenie wektora R(q;), K, (q\)/ AR@G-1)
Wyznaczenie wektora residuum: AR(q,) = R° - R(q,), R@+)
Wyznaczenie macierzy stycznej K;(q,),
Wyznaczenia odwroconej macierzy stycznej [K,(q,)] !, 4R (q;)
Znalezienie przyrostu: Aq; = [K;(q,)]"! AR(q,), R=Kqq
Wyznaczenie wektora parametroéw weztowych: Aq,,; = q; tAq; ,
Wyznaczenie normy (zwykle euklidesowej) wektorow Aq; 1 AR(q,), R(gy)
Sprawdzenie kryterium zbieznosci, Aqi | AGi+1 |AGis2 | ... q
Zwigkszenie indeksu: i =i+ 1 i powtorzenie krokéw od 1 do 9. g G gz

XA W=

Iteracje sa wykonywane dotad, az zostang spetnione kryteria zbieznosci:
a) przemieszczeniowe [[Aq ], < &, lq,.
b) sitowe [|AR(q))ll; < & (IR,

Wielkosci ¢,1 & sa tolerancjami, ktore z regulty przyjmuje si¢ na poziomie okoto 0,1% warto$ci norm wektorow odniesienia q,, 1 R, .
Wektorem odniesienia w przypadku przemieszczen jest najczesciej aktualny stan q,, natomiast w przypadku kryterium silowego za
wektor odniesienia przyjmuje si¢ warto$¢ obcigzenia R? z danego podkroku.

W metodzie elementow skonczonych lepszg zbieznos¢ uzyskuje si¢ zwykle dla kryterium przemieszczeniowego.
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Iteracyjne rozwigzanie uktadu nieliniowych rownan metodg iteracji bezposrednich

Seria przyblizonych rozwigzan (iteracje): {q}o , {q}l , {q}z , {q}n
zbieznos¢ do doktadnego rozwigzania

Wektor {q}i oblicza sie{,xﬁa podstawie poprzedniego rozwigzania {q},-_l

i [K({q}i-0) g} = {R}

"
RO L
/ {q}o — dowolne rozwigzanie poczatkowe (=0),
tga=k, oot sse- | | | B
| [K]; = [K({q};)] ! - poprawiona macierz sztywnosci
JoNog T s e e e e e
o] 2 Kryteria zbieznosci:
" lealnns ‘T\_\\. [— .. .,
9 G:qs q Zbieznosc przyrostu DOF

T {Aq}; = {q}; — {q}i_1 — ltAq)ll < 6

{AR}1+1 ={R} - [K]i{q}; : — I{AR}|| < € O , € - wartoéci odniesienia
2 Ayl _ AR
Normy: 10l = (xlp2 (oyteria dotycaace B _ . IRyl
btedéw wzglednych I{q}:l R

[}l = max x; 18




Techniki Iteracyjnego rozwigzania uktadu nieliniowych rownan

Przyktad 4: Znajdz przemieszczenie u dla sprezyny nieliniowej )
p k(u) . k(u)=1-u 1
anmannmn T a0
Rozwigzanie analityczne: Fi

K =F u, =£:0.2734,
u'—u+ F=0 T JLuz”*/mo.mé.

Rozwigzanie numeryczne:

Fi

sztywnosc styczna:

o dFf d dk
= k., =—=—k(u)=—u+k=1-2u
tgor= k(u) - " du du( (u)u) du
tg = ky(U)

—_—

cl
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Metoda iteracji bezposrednich

{a}i = [K]z_—11{F}

Poczgtkowe rozwigzanie: uy =0=k(uy) =1—-0

i F,
lteracjal: U = k(go)
Iteracja ,,i”: U; = %

-1

Przyrost przemieszczenia:
Aui= Ui —Uuj—1

Kryterium zbieznosci:

| J l w
Aul < ; g
= E %0 Wy lLL... Wi
IF u; = Fa ki =1—uy Au; = u; —uj_q Au;
k(ui-1) —
U
0.2/1=0.2 1-0.2=0.8 0.2-0=0.2 1
0.2/0.8=0.25 1-0.25=0.75 0.25-0.2=0.05 0.25

0.2/0.75= 0.2667 1-0.2667=0.7333 0.2667-0.25=0.017 0.064
0.2/0.7333=0.2727 | 1-0.2727=0.7273 | 0.2727-0.2666= 0.006 | 0.022
0.2/0.7273=0.2750 1-0.275=0.725 0.275-0.2727=0.0023 | 0.0084

0.2/0.725=0.2759 | 1-0.2759=0.7241 | 0.2759-0.275=0.0009 | 0.0032 20

|| W=




Metoda przyrostowa

wektora niewiadomych {q};

Poczatkowe rozwigzanie:

lteracja 1:
Wektor residualny: Ry = F, — k(uy) « ug= F,

przyrost przemieszczenia: Aulz %
Uo

przemieszczenie: U = Auq + ug = Auy

Iteracja ,i”: R, =F, —k(uj_1) - u;_4

R;
k(ui—q)

Aui=

u; = Aui + Ui—1

Kryteria zbieznosci:
R .

Obliczenia dotyczg przyrostow {R} _ {F} . [K] 1{61}' X
| l— l—

R2 R3
F —
/
tgo,= K,
R1 1:gai_ ki
o 2
Ao
[ S W
Au,  Au, “Au, u
u; U, U
W
AN A
> YRS \LV
O\ Y2
S o~

AR
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Metoda przyrostowa

Obliczenia dotyczg przyrostow
wektora niewiadomych {q};

Poczatkowe rozwigzanie:

{R}; ={F} = [Kli-1{q}i-1

lteracja 1:

przemieszczenie:

przyrost przemieszczenia:

Wektor residualny: Ry = F, — k(uy) « ug= F,

_ R
Au,y = k(ulo)

u; = Aul + Ug = Aul

lteracja ,i”:

Ri = Fy — k(ui—q) - ui—4

Aui =

R
k(ui—q)

u; = Aui + Ui

i U,y ko =1—u,4 R =F—k_ju,, Au, = %_1 U; = Uy + Au; Af:;’ %

1 0 | 0.2 0.2 0.2 | 1

2 0.2 0.8 0.04 0.05 0.25 0.2 0.2

3 0.25 0.75 0.0125 0.0167 0.2667 0.063 0.063

4 0.2667 0.733 0.0044 0.006 0.2727 0.022 0.022

5 0.2727 0.7273 0.0017 0.0023 0.2750 0.008 0.0085

Kryteria zbieznosci:

Au; R;
—L<e¢ <<94
u; F
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Metoda Newtona-Raphsona F » k() .
. . . . - . . # k(u)=1-u : Eu

W kazdej iteracji w obliczeniach liniowego uktadu rownan
uzywana jest macierz styczna d{F} d[K]
K]y == =[K] + {q} 5 - ©
d{q} d{q}
Sztywnosc styczna:
_dF _ d(k(u))-u d(k(u)) _ 4
kr = = ™ k(u) u+l—u=1-2-u
Poczatkowe rozwigzanie: ug =0=k(up) =1-0=1 u;
W
: dF a ,/Z‘F’ Kra
lteracja 1: le:d_ =1-2-ug A W\L s
A\ Vg
> L/ -~
Wektor residualny: R = F, — k(uo) “Ug= Fy \@'}// /// é/// // 1
R, o [ Ry Tl Ri
przyrost przemieszczenia: Au1= 17y Q.?/ alky
| aks | A
przemieszczenie: Uy = Auq + ug = Auy L/
. dF %
lteracia ,i”: k.., =— =1-2-u_, s
u Uj—1 AU
1
R; = Fy — k(ui—l) "Uj—q B _%4 Uy U,
Au;= R—i_ u; = Au; +uj_q Aus R
bokri ' ' ' Kryteria zbieznoéci: u_,L <€, FL




Metoda Newtona-Raphsona

W kazdej iteracji w obliczeniach liniowego uktadu réwnan

uzywana jest macierz styczna

Sztywnos¢ styczna:

sz

ar _ d(k(w))-u _ d(kw)) U+ du

du du

du

[K]r

du

_ai}
~d{q}

d[K]

[K]‘l'm

Poczatkowe rozwigzanie: uy =0=>k(uy) =1-0=1

{q}

k(W=—-u+1—-u=1-2-u

. . 'II- dF
lteracia1: kpy =—| =1-2-u, lteracja ,i":  fp, = o Tl-2rwin
Uo Uj—1
Wektor residualny: R; = F, — k(ug) - ug=F) Ri = Fo = k(ui—1) - Uiy
— R —
przyrost przemieszczenia: Au,= kR—Tll Aui— k_;l Ui = Aui + Ui
. . — — Au. R.
przemieszczenie: Uy = Auy + Uy = Ay Kryteria zbieznosci: u—l <E€ Fl <o
L
i i, k_ =l-u_, R =F =k, kp=1-2u_, Au, = % u,=u,_, +Au, L:;i %
1 0 1 0.2 1 0.2 0.2 1 1
2 0.2 0.8 0.04 0.6 0.0667 0.2667 0.250 0.2
3 0.2667 0.7333 0.0044 0.466 0.0095 0.2762 0.048 0.034
4 0.2762 0.7238 0.0001 0.448 0.0002 0.2764 0.001 0.0005
9]




Zmodyfikowana metoda Newtona-Raphsona

i V/
W kazdej iteracji uzywany jest ten sam zestaw ° 0= 0L,= .. =0
rédwnan (ta sama macierz poczgtkowa) '(X tg o, =k,
1
[Kol ™t zamiast  [K]; Y
u, u,u,
TR i < Ri <
Kryteria zbieznosci: = F=
C —1— —F—Fk _R _ Ay, R;
U, ki, =1-u,, R=F—-Fk_ju,, Au, = A_D i, =u, ;+Au, - ?
| 0 1 0.2 0.2 0.2 | 1
2 0.2 0.8 0.04 0.04 0.24 0.167 0.2
3 0.24 0.76 0.0176 0.0176 0.2576 0.068 0.088
4 0.2576 0.7424 0.0087 0.00876 0.2664 0.033 0.044
5 0.2664 0.7336 0.0046 0.0046 0.2710 0.017 0.023
6 0.2710 0.729 0.0024 0.0024 0.2734 0.009 0.012
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Metoda Newtona-Raphsona

i u,, k,=1-u,_, R=F k., ky=1-2u,, Au, = “% u, =, +Au, A“i %
1 0 1 0.2 1 0.2 0.2 1 1
2 0.2 0.8 0.04 0.6 0.0667 0.2667 0.250 0.2
3 0.2667 0.7333 0.0044 0.466 0.0095 0.2762 0.048 0.034
4 0.2762 0.7238 0.0001 0.448 0.0002 0.2764 0.001 0.0005
Procedura iteracji bezposredniej (podejscie przyrostowe)

i U,y fg=1—u;, R =F—k_u,, An, :‘%_l ;= + A, L:‘Ti:" %

1 0 1 0.2 02 0.2 1 1

2 0.2 0.8 0.04 0.05 0.25 0.2 0.2

3 0.25 0.75 0.0125 0.0167 0.2667 0.063 0.063

4 0.2667 0.733 0.0044 0.006 0.2727 0.022 0.022

5 0.2727 0.7273 0.0017 0.0023 0.2750 0.008 0.0085

Zmodyfikowana procedura Newtona-Raphsona

i U4 ki =1-u,, R =F—k_u, A, = K b, ;= + Al /_’\;j' %

1 0 1 02 0.2 02 1 1

2 0.2 0.8 0.04 0.04 0.24 0.167 02

3 0.24 0.76 0.0176 0.0176 0.2576 0.068 0.088

4 0.2576 0.7424 0.0087 0.00876 0.2664 0.033 0.044

5 0.2664 0.7336 0.0046 0.0046 02710 0.017 0.023

6 0.2710 0.729 0.0024 0.0024 0.2734 0.009 0.012

k(u)

7 F
u
F
o
4
tg o, = K,
——
u
Fi
F
tga= Kk,
A3
X4 e
u, u,u, “u
F
o V
g o= 0,=
o tgo, =k,
U, U,u, u
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: \;6;“'? -‘:‘..‘n—t-\/%
[ “‘,\\ " CDirect ncromentul  approach
i ! ¢
R
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Iteracyjne obliczenia nieliniowe w praktyce

Load steps, substeps, and “time”

Load
| Loadstepz
Uzytkownik wykonuje nieliniowg analize statyczng, Substep e O Load step
dziel bciaz i krokd h . I # Substep
ac obcigzenie na szereg krokow przyrostowyc Load step 1 o
obcigzenia i w kazdym kroku wykonujac kolejne o
.. . . . . 7 . I I
przyblizenia liniowe w celu uzyskania réwnowagi. A
. .. . . . . .7 . |
Kazde przyblizenie liniowe wymaga jednego przejscia i o
4 7 . . 7 . I
przez solver rdwnan (iteracja rownowagi). | i |
| | |
. : = Time

0 0.5 1.0 1.5 1,75 &0

substep3  F step
substep 2

iiteration
substep 1




Nieliniowosci geometryczne

Nieliniowos¢ — charakterystyka miekngca

FA

Silne nieliniowosci Sciezki rownowagi
punkty krytyczne
punkty zwrotne

FA

snap-through
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Nieliniowosci geometryczne

TL _ Total Lagrange Total

(stacjonarny opis Lagrange’a) Lagrange
UL _ Updated Lagrange Updated
(uaktualniony opis Lagrange’a) Lagrange

ity sledzgce — (np. cisnienie %
Sity $ledzace — (np ) %HH# Yy
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Nieliniowosci geometryczne

Nieliniowosci geometryczne w MES — test NAFEMS NL5

Elementy belkowe
materiat sprezysty,
duze przemieszczenia

g duze obroty

L.

é1!1111111|1|\M=3000in-1b
Y.

3

MSC/NASTRAN Nonlinear Analysis % = &\ =

L

L

o 3

o¥F

o

4.6.5 NL5: Straight cantilever with end moment

Product: Abaqus/Standard

Element tested

B22

Problem description

7 '
A %
R $ A /j\ M
' - A
- i -
e 1
Section A- A
inc | moment (in-1b) | O.nqg
1 300 36.7°
2 600 73.3°
3 900 110.0°
4 1200 146.7°
5 1500 183.3°
6 1800 220.0°
7 2100 256.6°
8 2400 293.3°
9 2700 330.0°
10 3000 366.6° |

31




	Sekcja domyślna
	Slajd 1: Metoda elementów skończonych (MES2)
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31


