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skończonych
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Wykład 4. Zagadnienia nieliniowe
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LINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTAŁCALNEJ

Kq = F

Jeśli obciążenie da się rozłożyć na składowe:

Nieliniowości strukturalne powodują, że odpowiedź konstrukcji zmienia się 
nieproporcjonalnie do przyłożonych sił. Realistycznie rzecz biorąc, prawie wszystkie 
konstrukcje są nieliniowe z natury, ale nie zawsze w takim stopniu, że nieliniowości te 
mają znaczący wpływ na analizę.

to można użyć metodę superpozycji:

i wtedy rozwiązanie końcowe jest sumą rozwiązań składowych: 



𝐾 𝑞 𝑞 = 𝐹 𝑞
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NIELINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTAŁCALNEJ

W analizie nieliniowej macierz sztywności konstrukcji i wektor obciążenia mogą zależeć 
od rozwiązania i dlatego są nieznane. 
Aby rozwiązać problem, program używa procedury iteracyjnej, w której szereg przybliżeń 
liniowych zbiega się do rzeczywistego rozwiązania nieliniowego.

- Czy rozwiązanie istnieje? Ile rozwiązań istnieje?
- Rozwiązanie czasochłonne
- Iteracyjny proces rozwiązania – problem konwergencji
- Wyniki obciążenia zależą od historii obciążenia
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Nieliniowości geometryczne. Jeśli struktura doświadcza dużych odkształceń, jej zmieniająca się 
konfiguracja geometryczna może spowodować, że struktura 
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Przyczyny zachowania nieliniowego

prosty sprężysto-plastyczny model 
zachowania się materiału

Nieliniowości materiałowe - nieliniowe zależności -
Czynniki mogące wpływać na właściwości - materiału:

• historia obciążenia (jak w przypadku odpowiedzi sprężysto-plastycznej), 
• warunki środowiskowe (np. temperatura)

• czas w którym obciążenie działa (jak w przypadku pełzania).

Nieliniowości geometryczne
Jeśli struktura doświadcza dużych odkształceń, jej zmieniająca się konfiguracja geometryczna 
może spowodować, że struktura zareaguje nieliniowo.

duże deformacje konstrukcji

Pod obciążeniami poprzecznymi belka jest bardzo elastyczna. 
W miarę wzrostu siły P pręt ugina się tak bardzo, że ramię momentu zmniejsza 
się zauważalnie, powodując wzrost sztywności przy większych obciążeniach.

P

Siły osiowe mogą zwiększać 
lub zmniejszać sztywność belki 
w zależności od kierunku sił.



Nieliniowości geometryczne. Jeśli struktura doświadcza dużych odkształceń, jej zmieniająca się 
konfiguracja geometryczna może spowodować, że struktura 

Przykład 1 – duralowy płaskownik (A=20x80 mm2), R02=280MPa (bez umocnienia)

Obciążony siłą (FZ=3000 N)

800 mm100

Nieliniowości materiałowe

ANALIZA LINIOWA

Przemieszczenia UZ [mm]

Naprężenia SX [MPa]

ANALIZA NIELINIOWA MATERIAŁOWO

Przemieszczenia UZ [mm]

Zredukowane odkształcenia 
plastyczne NLEPEQ
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Przemieszczenia UZ 
w funkcji obciążenia



Nieliniowości geometryczne. Jeśli struktura doświadcza dużych odkształceń, jej zmieniająca się 
konfiguracja geometryczna może spowodować, że struktura 

Przykład 2 – duralowy płaskownik (A=20x80 mm2)

Obciążony siłą (FZ=3000 N)

800 mm100

Nieliniowości geometryczne

ANALIZA LINIOWA

Przemieszczenia UZ [mm]

Naprężenia SX [MPa]

ANALIZA GEOMETRYCZNIE NIELINIOWA

Przemieszczenia UZ [mm]

Naprężenia SX [MPa]
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LINPrzemieszczenia UZ 
w funkcji obciążenia



Przykład 3 – duralowy płaskownik (A=20x80 mm2)

wirujący względem osi Z  (n=3000 obr./min)

i obciążony siłą (FZ=3000 N)

Nieliniowości geometryczne

ANALIZA LINIOWA

Przemieszczenia UZ [mm]

Naprężenia SX [MPa]

ANALIZA GEOMETRYCZNIE NIELINIOWA

Naprężenia SX [MPa]

Przemieszczenia UZ [mm]
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800 mm100

LIN

NLGEOM

Przemieszczenia UZ 
w funkcji obciążenia
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Tarcie, oddziaływanie kontaktowe, przerwy (gaps), liny

 

R e 

P 

3P 

P 

R 

a - length 
of contact zone 
a = a(P) 

ropes 

N>0 
N=0 

P 

Znaczenie historii obciążenia dla wyniku końcowego obciążenia

P2

1P

a) obciążenie klina przy różnej

v(P i następnie P ) = v(P i następnie P )

p
3

p
1

p
2

p =p =p =2R1 2 3 e

R  - granica plastycznoście

1 2 2 1

v

b) ściskanie kostki

     kolejności obciążeń

(tarcie)

tarcie

P2

1P

a) obciążenie klina przy różnej

v(P i następnie P ) = v(P i następnie P )

p
3

p
1

p
2

p =p =p =2R1 2 3 e

R  - granica plastycznoście

1 2 2 1

v

b) ściskanie kostki

     kolejności obciążeń

(tarcie)

materiał sprężysto-plastyczny

Przyczyny zachowania nieliniowego (c.d.)
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Test 1: zderzenie walca z rurą

Zgniatanie quasistatyczne: Zderzenie (pełna dynamika)
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Test 2. Zderzenie sekcji kadłuba samolotu Boeing 737-200
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Test 3. Analiza utraty stateczności ściskanego osiowo elementu cienkościennego o przekroju zamkniętym

1) Analiza pod obciążeniem statycznym zmiennym 
w czasie, zadanym  przemieszczeniowo

2) Analiza dynamiczna, po uderzeniu nieskończenie dużą masą 
o ustalonej prędkości (nieskończenie duża energia uderzenia). 

Model MES
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Opis ciała odkształcalnego o nieliniowych właściwościach

Wektory składowych stanu odkształcenia i naprężenia

𝜺𝑇 = 𝜀1, 𝜀2, 𝜀3, 𝛾12, 𝛾23, 𝛾13 , 𝝈𝑇 = 𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎13 .

𝜺 =

𝜀1
𝜀2
𝜀3
𝛾12
𝛾23
𝛾13

=

𝑢1, 1
𝑢2, 2
𝑢3, 3

𝑢1, 2 + 𝑢2, 1
𝑢2, 3 + 𝑢3, 2
𝑢1, 3 + 𝑢3, 1

+

1

2
(𝑢1, 1)

2 +
1

2
(𝑢2, 1)

2 +
1

2
(𝑢3, 1)

2

1

2
(𝑢1, 2)

2 +
1

2
(𝑢2, 2)

2 +
1

2
(𝑢3, 2)

2

1

2
(𝑢1, 3)

2 +
1

2
(𝑢2, 3)

2 +
1

2
(𝑢3, 3)

2

𝑢1, 1 𝑢1, 2 + 𝑢2, 1 𝑢2, 2 + 𝑢3, 1 𝑢3, 2
𝑢1, 2 𝑢1, 3 + 𝑢2, 2 𝑢2, 3 + 𝑢3, 2 𝑢3, 3
𝑢1, 1 𝑢1, 3 + 𝑢2, 1𝑢2, 3 + 𝑢3, 1 𝑢3, 3

Związki kinematyczne pomiędzy odkształceniami i przemieszczeniami otrzymuje się przez analizę zmian wymiarów elementarnego 

fragmentu ciała, a następnie uzyskane wyrażenie rozwija się w szereg Taylora: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝛼,𝑖𝑢𝛼,𝑗), gdzie indeksy po przecinkach oznaczają różniczkowanie po składowych i, j,  =1, 2, 3.

= 𝑩0 𝒒 +
1

2
𝑩1(𝒒) 𝒒 = 𝜺𝐿 + 𝜺𝑁𝐿,

𝑵,𝑗 =

𝜕𝑛11

𝜕𝑥𝑗

𝜕𝑛12

𝜕𝑥𝑗
…

𝜕𝑛1𝐿

𝜕𝑥𝑗

𝜕𝑛12

𝜕𝑥𝑗

𝜕𝑛22

𝜕𝑥𝑗
…

𝜕𝑛2𝐿

𝜕𝑥𝑗

𝜕𝑛13

𝜕𝑥𝑗

𝜕𝑛23

𝜕𝑥𝑗
…

𝜕𝑛3𝐿

𝜕𝑥𝑗

,   i, j = 1, 2, 3.

Liniowa składowa odkształcenia L jest iloczynem macierzy B0 i wektora parametrów węzłowych q.

Macierz B0 zależy wyłącznie od funkcji kształtu.

Nieliniowa składowa odkształcenia NL jest iloczynem macierzy B1 i wektora parametrów węzłowych q.

𝑵𝑖•,𝑗
𝑇 =

𝜕𝑛𝑖1
𝜕𝑥𝑗

,
𝜕𝑛𝑖2
𝜕𝑥𝑗

, … ,
𝜕𝑛𝑖𝐿
𝜕𝑥𝑗

gdzie pochodne macierzy funkcji kształtu:

𝑩0 =

𝑵1•, 1
𝑇

𝑵2•, 2
𝑇

𝑵3•, 3
𝑇

𝑵1•, 2
𝑇 + 𝑵2•, 1

𝑇

𝑵2•, 3
𝑇 +𝑵3•, 2

𝑇

𝑵1•, 3
𝑇 + 𝑵3•, 1

𝑇

, 𝑩1 =

𝒒𝑇𝑵, 1
𝑇𝑵, 1

𝒒𝑇𝑵, 2
𝑇𝑵, 2

𝒒𝑇𝑵, 3
𝑇𝑵, 3

𝒒𝑇(𝑵, 1
𝑇𝑵, 2 +𝑵, 2

𝑇𝑵, 1)

𝒒𝑇(𝑵, 2
𝑇𝑵, 3 +𝑵, 3

𝑇𝑵, 2)

𝒒𝑇(𝑵, 1
𝑇𝑵, 3 +𝑵, 3

𝑇𝑵, 1)

,



13

Zależność pomiędzy składowymi wektora składowych stanu naprężenia , a składowymi wektora odkształcenia

sprężystego e można zapisać na podstawie prawa Hooka przy pomocy macierzy konstytutywnej D, która zawiera

właściwości sprężyste materiału (E i ): 𝛔 = 𝐃𝛆e.

Poza zakresem sprężystym przyrost odkształceń plastycznych dp wyznacza się np. z prawa płynięcia jako iloczyn 

skalarnego mnożnika d i pochodnej potencjału plastycznego Q względem wektora składowych stanu naprężenia:

𝑑𝜺𝑝 = 𝑑𝜆
𝜕𝑄

𝜕𝝈
.

Jeśli potencjał Q zastąpi się funkcją plastyczności F (, ), zależność przyjmie 

postać stowarzyszonego prawa płynięcia (z odpowiednim warunkiem 

plastyczności). Współczynnik  oznacza pracę plastyczną zsumowaną dla całej 

historii obciążenia, związaną z izotropowym umocnieniem materiału. Korzystając z 

hipotezy Hubera-Misesa-Hencky’ego warunek plastyczności zapisuje się w postaci:

𝐹 = 𝜎𝑟𝑒𝑑𝐻𝑀𝐻 − 𝑅𝑒(𝜅) = 0,

Zależność  = f () dotyczącą materiału o właściwościach sprężysto-

plastycznych z umocnieniem dla jednoosiowego stanu naprężenia➔

𝜺 = 𝜺𝑒 + 𝜺𝑝.Odkształcenie całkowite :

𝐹 =
1

2
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 + 3 𝜏122 + 𝜏232 + 𝜏312 − 𝑅𝑒(𝜅) = 0.

Jeśli w ustroju nie występują odkształcenia plastyczne macierz D* jest równa macierzy konstytutywnej D

Po przekształceniach mamy:

d = 𝑫 𝑑𝜺 − 𝑑𝜺𝑝 = 𝑫− 𝑫
𝜕𝐹

𝜕𝝈

𝜕𝐹

𝜕𝝈𝑇
𝑫 𝐸𝑢 +

𝜕𝐹

𝜕𝝈𝑇
𝑫

𝜕𝐹

𝜕𝝈

−1
𝑑𝜺 = 𝑫∗ 𝑑𝜺.

macierz sprężysto-plastycznaprzyrost naprężenia

Nieliniowość wywołana plastycznością
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Zasada prac przygotowanych

Równania równowagi ciała przedstawionego na rysunku można uzyskać z zasady prac

przygotowanych, pamiętając, że praca przygotowana reakcji sztywnych więzów jest równa zero:

න
𝑉

𝝈𝑇𝛿𝜺𝑑𝑉 − න
𝑆𝑝

𝒑𝑇𝛿𝒖𝑑𝑉 −෍
𝑖=1

𝑚

𝑸𝑖𝛿𝒖𝑖 −න
𝑉

𝒎𝑇𝛿𝒖𝑑𝑉 = 0

Siły masowe m wyznacza się z iloczynu gęstości i przyspieszeń ü(t): 𝒎 = −𝜌 𝑵 ሷ𝒒.

Uogólnione przemieszczenie przygotowane u wyznacza się jako iloczyn macierzy funkcji kształtu

i przemieszczenia przygotowanego parametrów węzłowych: 𝛿𝒖 = 𝑵 𝛿𝒒.

Przemieszczenia przygotowane odkształceń  wyznacza się wykorzystując liniowość macierzy B1 względem

wektorów q i q:

𝛿𝜺 = 𝑩0𝛿𝒒 +
1

2
𝑩1(𝒒)𝛿𝒒 +

1

2
𝑩1(𝛿𝒒)𝒒 = (𝑩0 + 𝑩1(𝒒))𝛿𝒒.

Korzystając z powyższych zależności oraz przemienności iloczynu skalarnego wektorów zasadę prac

przygotowanych da się przedstawić w następujący sposób:

𝑉׬ 𝛿𝒒
𝑇(𝑩0

𝑇 + 𝑩1
𝑇)𝝈 𝑑𝑉 − 𝑆𝑝׬ 𝛿𝒒

𝑇𝑵𝑇𝒑𝑑𝑉 − σ𝑖=1
𝑚 𝛿𝒒𝑇𝑵𝑖

𝑇𝑸𝑖 + 𝑉׬ 𝛿𝒒
𝑇𝑵𝑇𝜌𝑵 ሷ𝒒𝑑𝑉 = 0.

Zapisując powyższe równanie po umieszczeniu wariacji q przed znakami całek i sumy otrzymamy:

𝛿𝒒𝑇 𝑉(𝑩0׬
𝑇 + 𝑩1

𝑇)𝝈 𝑑𝑉 − 𝑆𝑝𝑵׬
𝑇𝒑𝑑𝑉 − σ𝑖=1

𝑚 𝑵𝑖
𝑇𝑸𝑖 + 𝑉𝑵׬

𝑇𝜌𝑵 ሷ𝒒𝑑𝑉 = 0,

Ponieważ przemieszczenia przygotowane q są dowolne i różne od zera, spełnienie tego równania wymaga 

zerowania się wyrażenia w nawiasie. 
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Grupując poszczególne wyrazy w wektor sił wewnętrznych R(q) i wektor obciążeń zewnętrznych R0 niezależny od

parametrów węzłowych, uzyskuje się następujący układ równań nieliniowych:

𝑹(𝒒) − 𝑹0 = 𝟎,

w którym: 𝑹(𝒒) = 𝑉(𝑩0׬
𝑇 + 𝑩1

𝑇) 𝝈 𝑑𝑉,

𝑹0 = 𝑆𝑝𝑵׬
𝑇𝒑𝑑𝑉 + σ𝑖=1

𝑚 𝑵𝑖
𝑇𝑸𝑖 − 𝑉𝑵׬

𝑇𝜌𝑵 ሷ𝒒𝑑𝑉.

(*)

Układ równań (*) rozwiązuje się metodami iteracyjnymi, np. metodą Newtona-Raphsona, która polega na linearyzacji 

przyrostu wektora R wokół położenia q = q0 , uzyskiwanej przez rozwinięcie wyrażenia (*) w szereg Taylora, łącznie z 

wyrazem zawierającym pierwszą pochodną:

𝑹 𝒒 = 𝑹 𝒒0 +
𝜕𝑹 𝒒

𝜕𝒒
𝛥𝒒

Pochodna wektora R względem wektora q oznaczana jest często jako macierz styczna KT. Przy różniczkowaniu 

należy uwzględnić wzór 𝑫∗ =
𝑑𝝈

𝑑𝜺
: 𝜕𝜺

𝜕𝒒
= 𝑩0

𝑇 + 𝑩1
𝑇 ,

𝜕𝝈

𝜕𝒒
=

𝜕𝝈

𝜕𝜺

𝜕𝜺

𝜕𝒒
= 𝑫∗ 𝜕𝜺

𝜕𝒒
.

w którym: 𝑲(𝒒)𝒒 = 𝑹(𝒒) , 𝑷(𝑡) = 𝑆𝑝𝑵׬
𝑇𝒑(𝑡) 𝑑𝑉 + σ𝑖=1

𝑚 𝑵𝑖
𝑇𝑸𝑖(𝑡) , 𝑴 = 𝑉𝑵׬

𝑇𝜌𝑵 𝑑𝑉.

Macierz M jest macierzą masową, wektor P(t) zawiera obciążenia zależne od czasu, natomiast K(q) jest

nieliniową macierzą sztywności, zależną od przemieszczeń węzłowych.

W zagadnieniach dynamicznych z tłumieniem zależność powyższą uzupełnia się o macierz tłumienia C,

proporcjonalną do prędkości dq/dt. Pełne równanie ruchu ciała przyjmuje wtedy następującą postać:

𝑴 ሷ𝒒 + 𝑪 ሶ𝒒 + 𝑲(𝒒)𝒒 = 𝑷(𝑡), (**)

Po uwzględnieniu powyższych związków macierz styczna KT może być przedstawiona jako suma trzech macierzy:

𝑲𝑇 =
𝜕𝑹(𝒒)

𝜕𝒒
= 𝑉׬

𝜕 𝑩0
𝑇𝝈

𝜕𝒒
𝑑𝑉 + 𝑉׬

𝜕 𝑩1
𝑇𝝈

𝜕𝒒
𝑑𝑉 = 𝑲0 + 𝑲𝐺 +𝑲𝐿, (***)
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𝑲𝑇 =
𝜕𝑹(𝒒)

𝜕𝒒
= 𝑉׬

𝜕 𝑩0
𝑇𝝈

𝜕𝒒
𝑑𝑉 + 𝑉׬

𝜕 𝑩1
𝑇𝝈

𝜕𝒒
𝑑𝑉 = 𝑲0 + 𝑲𝐺 +𝑲𝐿,

gdzie:

𝑲0 = 𝑉𝑩0׬
𝑇𝑫∗𝑩0

𝑇 𝑑𝑉 – początkowa macierz sztywności,

𝑲𝐺 = 𝑉׬ 𝑵,1
𝑇 𝑵,2

𝑇 𝑵,3
𝑇

𝜎11 0 0 𝜎12 0 0 𝜎13 0 0
0 𝜎11 0 0 𝜎12 0 0 𝜎13 0
0 0 𝜎11 0 0 𝜎12 0 0 𝜎13
𝜎12 0 0 𝜎22 0 0 𝜎23 0 0
0 𝜎12 0 0 𝜎22 0 0 𝜎23 0
0 0 𝜎12 0 0 𝜎22 0 0 𝜎23
𝜎13 0 0 𝜎23 0 0 𝜎33 0 0
0 𝜎13 0 0 𝜎23 0 0 𝜎33 0
0 0 𝜎13 0 0 𝜎23 0 0 𝜎33

𝑵,1
𝑵,2
𝑵,3

𝑑𝑉

– geometryczna macierz sztywności (wynikająca ze stanu naprężenia),

𝑲𝐿 = 𝑉𝑩0׬
𝑇𝑫∗𝑩1

𝑇 𝑑𝑉 + 𝑉𝑩1׬
𝑇𝑫∗𝑩0

𝑇 𝑑𝑉 + 𝑉𝑩1׬
𝑇𝑫∗𝑩1

𝑇 𝑑𝑉 – macierz dużych przemieszczeń.

Dla liniowej statyki, przy małych przemieszczeniach i wyeliminowaniu członów zależnych od czasu otrzymujemy

następującą postać:

𝑲0𝒒 = 𝑷, gdzie: P – wektor stałych obciążeń zewnętrznych.

(***)
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W przypadku nieliniowej statyki, związanej z uwzględnieniem dużych przemieszczeń oraz wpływu naprężeń na sztywność ciała, układ

równań (**) przyjmuje postać, w której macierz sztywności zależy od parametrów węzłowych:

𝑲(𝒒)𝒒 = 𝑷 , 𝑲𝑇 = 𝑲0 +𝑲𝐺 +𝑲𝐿,

gdzie: KT – macierz styczna, otrzymywana z zależności (***).

W położeniu wyjściowym znany jest wektor q0 oraz wektor obciążeń

zewnętrznych R0. W pierwszej iteracji indeks i = 0.

Przebieg dojścia do rozwiązania jest następujący:

1. Wyznaczenie wektora R(qi) ,

2. Wyznaczenie wektora residuum: R(qi) = R0 - R(qi),

3. Wyznaczenie macierzy stycznej KT (qi),

4. Wyznaczenia odwróconej macierzy stycznej [KT (qi)]
-1,

5. Znalezienie przyrostu: qi = [KT (qi)]
-1 R(qi),

6. Wyznaczenie wektora parametrów węzłowych: qi+1 = qi +qi ,

7. Wyznaczenie normy (zwykle euklidesowej) wektorów qi i R(qi),

8. Sprawdzenie kryterium zbieżności,

9. Zwiększenie indeksu: i = i + 1 i powtórzenie kroków od 1 do 9.

Iteracje są wykonywane dotąd, aż zostaną spełnione kryteria zbieżności:

a) przemieszczeniowe ||qi||2 < q ||qref||2
b) siłowe ||R(qi)||2 < R ||Rref||2

Wielkości q i R są tolerancjami, które z reguły przyjmuje się na poziomie około 0,1% wartości norm wektorów odniesienia qref i Rref .

Wektorem odniesienia w przypadku przemieszczeń jest najczęściej aktualny stan qi , natomiast w przypadku kryterium siłowego za

wektor odniesienia przyjmuje się wartość obciążenia R0 z danego podkroku.

W metodzie elementów skończonych lepszą zbieżność uzyskuje się zwykle dla kryterium przemieszczeniowego.

Metoda iteracyjna Newtona-Raphsona
Rozwiązanie układu równań nieliniowych w postaci (*) metodą Newtona-Raphsona polega na wielokrotnym 

rozwiązaniu zadania liniowego uzyskanego po linearyzacji wektora obciążeń wewnętrznych R(q). 
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Iteracyjne rozwiązanie układu nieliniowych równań metodą iteracji bezpośrednich

Seria przybliżonych rozwiązań (iteracje):           ,          ,          , …    
0q  

1q  
2q  

nq

zbieżność do dokładnego rozwiązania

Wektor  
iq oblicza się na podstawie poprzedniego rozwiązania  

1−iq

 
0q – dowolne rozwiązanie początkowe (=0),

Normy: 𝑥 = 𝑥 𝑥
1
2

𝑥 = max 𝑥𝑖

Kryteria dotyczące 
błędów względnych

Δ𝑞 𝑖

𝑞 𝑖
≤ 𝜀

∆𝑅 𝑖

𝑅
≤ 𝛿

𝐾 𝑖 = 𝐾 𝑞 𝑖 – poprawiona macierz sztywności

𝐾 𝑞 𝑖−1 𝑞 𝑖 = 𝑅

Kryteria zbieżności:

Zbieżność przyrostu DOF

Δ𝑞 𝑖 = 𝑞 𝑖 − 𝑞 𝑖−1
Δ𝑞 𝑖 ≤ 𝛿

Konwergencja niezrównoważona (wektor resztkowy)

∆𝑅 𝑖+1 = 𝑅 − 𝐾 𝑖 𝑞 𝑖 ∆𝑅 𝑖 ≤ 𝜀 𝛿 , 𝜀 - wartości odniesienia
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Przykład 4: Znajdź przemieszczenie u dla sprężyny nieliniowej

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

uuk −=1)(

𝐹𝑎 = 0.2

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
TRozwiązanie analityczne:

𝑘(𝑢)𝑢 = 𝐹

02 =+− Fuu
1

2

1 1 4
0.2734,

2

1 1 4
0.7236.

2

F
u

F
u

− −
= =

+ −
= =

sztywność styczna:

( ) uku
du

dk
uuk

du

d

du

dF
kT 21)( −=+===

Rozwiązanie numeryczne:





u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

Techniki Iteracyjnego rozwiązania układu nieliniowych równań
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Metoda iteracji bezpośrednich

𝑞 𝑖 = 𝐾 𝑖−1
−1 𝐹

𝑢0 = 0 ⇒ 𝑘 𝑢0 = 1 − 0Początkowe rozwiązanie:

Iteracja 1: 𝑢1 =
𝐹𝑎

𝑘 𝑢0

Kryterium zbieżności:

∆𝑢𝑖
𝑢𝑖
≤ 𝜀

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

uuk −=1)(

Iteracja „i” : 𝑢𝑖 =
𝐹𝑎

𝑘 𝑢𝑖−1

Przyrost przemieszczenia:

∆𝑢𝑖= 𝑢𝑖 − 𝑢𝑖−1
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Metoda przyrostowa

Obliczenia dotyczą przyrostów 
wektora niewiadomych 𝑞 𝑖

a) metoda bezpośrednich iteracji

tg    = k

tg    = k
1R

1u 3u2u
uu21u 3

1
0

2

obciążenie

F
3R2R

u

0 0

ii

𝑅 𝑖 = 𝐹 − 𝐾 𝑖−1 𝑞 𝑖−1

𝑢0 = 0 ⇒ 𝑘 𝑢0 = 1 − 0 = 1Początkowe rozwiązanie:

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

Iteracja 1:

∆𝑢1=
𝑅1

𝑘 𝑢0

Wektor residualny: 𝑅1 = 𝐹𝑎 − 𝑘 𝑢0 ∙ 𝑢0= 𝐹𝑎

przyrost przemieszczenia:

przemieszczenie: 𝑢1 = ∆𝑢1 + 𝑢0 = ∆𝑢1

Iteracja „i”:

∆𝑢𝑖=
𝑅𝑖

𝑘 𝑢𝑖−1

𝑅𝑖 = 𝐹𝑎 − 𝑘 𝑢𝑖−1 ∙ 𝑢𝑖−1

𝑢𝑖 = ∆𝑢𝑖 + 𝑢𝑖−1

Kryteria zbieżności:

∆𝑢𝑖
𝑢𝑖
≤ 𝜀 ;     𝑅𝑖

𝐹
≤ 𝛿

uuk −=1)(
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Metoda przyrostowa

Obliczenia dotyczą przyrostów 
wektora niewiadomych 𝑞 𝑖

𝑅 𝑖 = 𝐹 − 𝐾 𝑖−1 𝑞 𝑖−1

𝑢0 = 0 ⇒ 𝑘 𝑢0 = 1 − 0 = 1Początkowe rozwiązanie:

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

Iteracja 1:

∆𝑢1=
𝑅1

𝑘 𝑢0

Wektor residualny: 𝑅1 = 𝐹𝑎 − 𝑘 𝑢0 ∙ 𝑢0= 𝐹𝑎

przyrost przemieszczenia:

przemieszczenie: 𝑢1 = ∆𝑢1 + 𝑢0 = ∆𝑢1

Iteracja „i”:

∆𝑢𝑖=
𝑅𝑖

𝑘 𝑢𝑖−1

𝑅𝑖 = 𝐹𝑎 − 𝑘 𝑢𝑖−1 ∙ 𝑢𝑖−1

𝑢𝑖 = ∆𝑢𝑖 + 𝑢𝑖−1

Kryteria zbieżności:

∆𝑢𝑖
𝑢𝑖
≤ 𝜀 ;     𝑅𝑖

𝐹
≤ 𝛿

uuk −=1)(
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Metoda Newtona-Raphsona

𝐾 𝑇 =
𝑑 𝐹

𝑑 𝑞
= 𝐾 +

𝑑 𝐾

𝑑 𝑞
𝑞

W każdej iteracji w obliczeniach liniowego układu równań 
używana jest macierz styczna

Sztywność styczna:

𝑘𝑇 =
𝑑𝐹

𝑑𝑢
=

𝑑 𝑘 𝑢 ∙𝑢

𝑑𝑢
=

𝑑 𝑘 𝑢

𝑑𝑢
∙ 𝑢 + 

𝑑𝑢

𝑑𝑢
∙ 𝑘 𝑢 = −𝑢 + 1 − 𝑢 = 1 − 2 ∙ 𝑢

𝑢0 = 0 ⇒ 𝑘 𝑢0 = 1 − 0 = 1Początkowe rozwiązanie:

Iteracja 1:

∆𝑢1=
𝑅1
𝑘𝑇1

przyrost przemieszczenia:

przemieszczenie: 𝑢1 = ∆𝑢1 + 𝑢0 = ∆𝑢1

𝑘𝑇1 = ቤ
𝑑𝐹

𝑑𝑢
𝑢0

= 1 − 2 ∙ 𝑢0

Wektor residualny: 𝑅1 = 𝐹𝑎 − 𝑘 𝑢0 ∙ 𝑢0= 𝐹𝑎

Iteracja „i”: 𝑘𝑇1 = ቤ
𝑑𝐹

𝑑𝑢
𝑢𝑖−1

= 1 − 2 ∙ 𝑢𝑖−1

𝑅𝑖 = 𝐹𝑎 − 𝑘 𝑢𝑖−1 ∙ 𝑢𝑖−1

∆𝑢𝑖=
𝑅𝑖
𝑘𝑇𝑖

𝑢𝑖 = ∆𝑢𝑖 + 𝑢𝑖−1
Kryteria zbieżności:

∆𝑢𝑖
𝑢𝑖
≤ 𝜀 ;     𝑅𝑖

𝐹
≤ 𝛿

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

uuk −=1)(
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Metoda Newtona-Raphsona

𝐾 𝑇 =
𝑑 𝐹

𝑑 𝑞
= 𝐾 +

𝑑 𝐾

𝑑 𝑞
𝑞

W każdej iteracji w obliczeniach liniowego układu równań 
używana jest macierz styczna

Sztywność styczna:

𝑘𝑇 =
𝑑𝐹

𝑑𝑢
=

𝑑 𝑘 𝑢 ∙𝑢

𝑑𝑢
=

𝑑 𝑘 𝑢

𝑑𝑢
∙ 𝑢 + 

𝑑𝑢

𝑑𝑢
∙ 𝑘 𝑢 = −𝑢 + 1 − 𝑢 = 1 − 2 ∙ 𝑢

𝑢0 = 0 ⇒ 𝑘 𝑢0 = 1 − 0 = 1Początkowe rozwiązanie:

Iteracja 1:

∆𝑢1=
𝑅1
𝑘𝑇1

przyrost przemieszczenia:

przemieszczenie: 𝑢1 = ∆𝑢1 + 𝑢0 = ∆𝑢1

𝑘𝑇1 = ቤ
𝑑𝐹

𝑑𝑢
𝑢0

= 1 − 2 ∙ 𝑢0

Wektor residualny: 𝑅1 = 𝐹𝑎 − 𝑘 𝑢0 ∙ 𝑢0= 𝐹𝑎

Iteracja „i”: 𝑘𝑇1 = ቤ
𝑑𝐹

𝑑𝑢
𝑢𝑖−1

= 1 − 2 ∙ 𝑢𝑖−1

𝑅𝑖 = 𝐹𝑎 − 𝑘 𝑢𝑖−1 ∙ 𝑢𝑖−1

∆𝑢𝑖=
𝑅𝑖
𝑘𝑇𝑖

𝑢𝑖 = ∆𝑢𝑖 + 𝑢𝑖−1

Kryteria zbieżności:
∆𝑢𝑖
𝑢𝑖
≤ 𝜀 ;     𝑅𝑖

𝐹
≤ 𝛿

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

uuk −=1)(
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W każdej iteracji używany jest ten sam zestaw 
równań (ta sama macierz początkowa)

Zmodyfikowana metoda Newtona-Raphsona

𝐾0
−1 𝐾 𝑖−1

−1zamiast

b) zmodyfikowana metoda N-R

1

321u uu

obciążenie

F
0

u

=

tg     = k

=1

0

....=2

0

0

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T

uuk −=1)(

Kryteria zbieżności:
∆𝑢𝑖
𝑢𝑖
≤ 𝜀 ;     𝑅𝑖

𝐹
≤ 𝛿
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Procedura iteracji bezpośredniej (podejście przyrostowe)

u

F

u1 2u 3u

1
2

3

F

tg    = ki i

Zmodyfikowana procedura Newtona-Raphsona

b) zmodyfikowana metoda N-R

1

321u uu

obciążenie

F
0

u

=

tg     = k

=1

0

....=2

0

0

Metoda Newtona-Raphsona
obciążenie

c) metoda N-R

F

u

tg     = k
1

0

0 0

u

F

u

k(u)

1

k(u)

u

1

k(u)=1-u

F

tg   = k(u)

tg   = k  (u)
T
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Iteracyjne obliczenia nieliniowe w praktyce

Użytkownik wykonuje nieliniową analizę statyczną, 
dzieląc obciążenie na szereg kroków przyrostowych 
obciążenia i w każdym kroku wykonując kolejne 
przybliżenia liniowe w celu uzyskania równowagi. 
Każde przybliżenie liniowe wymaga jednego przejścia 
przez solver równań (iteracja równowagi). 

u 

F 

t 

F 

step1 

step 2 

step 3 

step4 

F 1 
2 F 

3 F step1 substep 3 1 F 

substep 1 

substep 2 
iiteration 
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Nieliniowość – charakterystyka mięknąca

Silne nieliniowości  ścieżki równowagi
punkty krytyczne  

punkty zwrotne

Nieliniowości geometryczne
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Siły śledzące – (np. ciśnienie)

TL – Total Lagrange

(stacjonarny opis Lagrange’a)

UL – Updated Lagrange

(uaktualniony opis Lagrange’a)

Nieliniowości geometryczne
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Nieliniowości geometryczne w MES – test NAFEMS NL5

Elementy belkowe

materiał sprężysty, 

duże przemieszczenia

duże obroty

Nieliniowości geometryczne
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